Statistical Methods =================== This section provides detailed documentation of the statistical methods, algorithms, and biological rationale underlying WASP2's allele-specific analysis pipeline. .. toctree:: :maxdepth: 2 :caption: Contents counting_algorithm mapping_filter statistical_models dispersion_estimation fdr_correction Overview -------- WASP2 implements a complete pipeline for allele-specific analysis: 1. **Allele Counting**: Reads are assigned to reference or alternate alleles at heterozygous variant sites using base-level alignment information. 2. **Mapping Bias Correction**: The WASP algorithm removes reads that exhibit mapping bias by testing whether allele-swapped reads map to the same location. 3. **Statistical Testing**: Beta-binomial models account for overdispersion in allele count data when testing for allelic imbalance. 4. **Multiple Testing Correction**: False discovery rate control ensures reliable detection of true imbalanced regions. References ---------- .. [vandeGeijn2015] van de Geijn B, McVicker G, Gilad Y, Pritchard JK (2015). WASP: allele-specific software for robust molecular quantitative trait locus discovery. *Nature Methods* 12:1061-1063. .. [Castel2015] Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T (2015). Tools and best practices for data processing in allelic expression analysis. *Genome Biology* 16:195. .. [Skelly2011] Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM (2011). A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. *Genome Research* 21:1728-1737.